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T he number of nucleic acid therapies in development,
including oligonucleotide therapeutics (ONTs) and vac-

cines, increased rapidly since their inception in 19781; in
particular, following the full approval of the first mRNA
COVID-19 vaccine in 2021.2 Today, ONTs comprise the
third major class of drugs after small molecules and thera-
peutic antibodies, with many recent regulatory approvals and
hundreds of ongoing clinical trials worldwide.3,4 ONTs,
such as antisense oligonucleotides (ASOs) and small inter-
fering RNA (siRNAs), are short fragments of nucleic acids
complementary to a specific mRNA. Their function is to
suppress, amplify, or alter the expression of a gene; by inhib-
iting, promoting or eliminating errors in RNA processing
(e.g., RNA splicing or RNA degradation), ultimately influ-
encing translation of the corresponding protein. The develop-
ment, successes, and challenges of such ONTs have been
reviewed recently.5–7 Given their genetically derived target,
ONTs are applied across diverse disease areas, from oncol-
ogy and neurology to infectious disease prevention.8–10

Importantly, however, a significant number of fundamental
hurdles need to be overcome before an ONT drug can
reach the market, including (1) poor stability and high sen-
sitivity to endo- and exonucleases in tissues and fluids
(e.g., plasma or cerebrospinal fluid), (2) inefficient uptake
into target cells or tissues, (3) off-target effects due to
interactions with unintended mRNA targets, and (4) unwanted

immunogenicity11 or immuno-stimulation. Furthermore, the
development of ONTs as pharmaceutical drugs is hampered by
limitations around their detection, including the quantitative
methods available currently to demonstrate delivery,
safety, and efficacy.12 These limitations are echoed in cur-
rent 2024 guidance documents issued by the US Food and
Drug Administration (FDA) where it is recognized that the
rapid evolution of ONTs, including new chemical modifi-
cations and delivery methods, can significantly impact
immunogenicity risk and clinical assessment approaches.
In its guidance, the FDA indicates that immunogenicity
assays may be necessary to measure immune responses to
different components of ONT drugs especially when the
therapeutic includes carriers or conjugates.13,14 This guid-
ance is concordant with earlier calls for better analytical
tools to evaluate the drug metabolism and pharmacoki-
netics of ONTs and more broadly evaluate their absorption,
distribution, metabolism, excretion, and toxicology proper-
ties.15 Optimal methods for sample analyses should con-
sider the advantages, disadvantages, and limitations of
each assay, differences in the matrix (e.g., plasma, tissue,
or urine), the sensitivity of detection required as well as
the objectives for the analysis (e.g., quantitative PK mea-
surement or qualitative metabolite identification).16 While
generally assessed by criteria established for small mole-
cules,17 ONTs should also be evaluated by bioanalytical
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assays,18 for immunogenicity and anti-drug antibody
(ADA) detection,11,19 for stereochemical control of chiral
centers within certain ONTs18,20,21 and by methods to estab-
lish the drug release criteria; ideally without the use of radio-
labeled tracers for ease of use, safety, and cost.17,22 We
hypothesized that some of these needs might be addressed by
deploying immunoassays, particularly if highly specific anti-
bodies to ONTs could be generated and made available to
researchers.

Existing Analytical Methods:

Unmet Need for Alternatives

Many publications focusing on analytical assays for ONTs
would arguably lead the reader to conclude that liquid chro-
matography combined with mass spectrometric detection23–25

is the method of choice to obtain structural information about
ONTs directly, despite known sensitivity challenges associ-
ated with the assay.26,27 In Table 1 we present a summary of
many existing analytical methods for ONTs. Absorption stud-
ies of ONTs mainly include the use of liquid chromatography-
tandem mass spectrometry (LC-MS/MS)28,29 or ligand bind-
ing assays (LBA)31,32 to determine the concentration of ONTs
in plasma, tissue homogenates, and other biofluids.30 Distribu-
tion studies of ONTs, often using radiolabeling of the drug33

or hybridization assays34,35 such as in situ hybridization (ISH)
and more recently dual-ISH (DISH),36 frequently rely on
microscopy to determine tissue distribution and fluorescent

imaging to determine intracellular localization. The latter
sometimes requires fluorescent labeling of the ONT (e.g.,
Cy3) which may alter significantly cellular uptake and other
pharmacodynamic properties of the drug.30 Metabolism and
excretion studies, including those designed to detect metabo-
lites of ONTs, primarily use LC-MS/MS to analyze urine and
other biofluids and may require the use of radiolabeling to iso-
late 30 or 50 “shortmer” sequences30,32,34 Sequential anion
exchange and reversed-phase solid-phase extraction are also
used for this purpose.28,37

Bioanalytical methods, such as the enzyme-linked immu-
nosorbent assay (ELISA), often rely on hybridization of the
ONT to a complimentary oligonucleotide sequence where
subsequent ligation of a tagged probe sequence is detected
using enzyme-labeled antibodies,18 or likewise in an electro-
chemiluminescent platform.38 Variants of this method using
branched DNA can increase sensitivity and accuracy.39,40 In
addition, hybridization-ligation ELISA (HL-ELISA) and
reverse-transcription quantitative polymerase chain reaction
(RT-qPCR) have further improved the sensitivity of these
assays and the ability to quantitate ONTs.18 Others have
developed assays for the bioanalysis of ONTs including capil-
lary gel electrophoresis,41 LC-fluorescence assays, and nano-
scale secondary ion mass spectrometry (nanoSIMS),42 as well
as other chromatographic methodologies.37 For measuring
and monitoring ONTs, qPCR has the highest sensitivity and
LC-MS/MS has the best specificity.45–48 Often bespoke anti-
bodies are developed for specific ONTs themselves, where the

TABLE 1. COMMONLY USED ANALYTICAL ASSAYS FOR ONTS

Study/method type Existing analytical assay Purpose

Adsorption studies Chromatography-tandem mass
spectrometry (LC-MS/MS)28,29

Ligand binding assays (LBA)31,32

To determine the concentration of ONTs in
plasma, tissue homogenates, and other
biofluids30

Distribution studies Radiolabeling of drug33

Hybridization assays (ISH,34,35 DISH36)
To determine tissue distribution and
intracellular localization

Metabolism and Excretion
Studies

Chromatography-tandem mass
spectrometry (LC-MS/MS)32,30,34

Sequential anion exchange and
reverse-phase solid-phase extraction (SPE)28,37

To determine metabolites including
“shortmer” sequences present in urine
and other biofluids

Bioanalytical methods ELISA18

Electrochemiluminescent platforms38

Branched-chain ELISA39,40

To detect ONTs using complimentary
oligonucleotide sequences indirectly
using enzyme-labeled antibodies

Quantification methods Hybridization-ligation ELISA (HL-ELISA)
Reverse-transcription quantitative
polymerase chain reaction (RT-qPCR)

To improve the sensitivity and the ability
to quantitate ONTs17

Other bioanalytical
methods

Capillary gel electrophoresis (CGE)41

LC-fluorescence assays
Nanoscale secondary ion mass spectrometry
(nanoSIMS)42

To separate, analyze, and quantify ONTs

Immunoassay studies Drug-specific customized antibodies43,44 To generate antibodies against individual
drugs where epitopes may consist of
sequence, conformation, and/or
chemical modification

While LC-MS/MS, LBA, and HL are recognized as routine assays for ONT characterization, several other types of assays provide alterna-
tives, in part, to overcome known limitations for core analytical assays. qPCR has the highest sensitivity and LC-MS/MS has the best speci-
ficity for measuring and monitoring ONTs.
DISH, dual-ISH; ISH, in situ hybridization; ONTs, oligonucleotide therapeutics.
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resultant antibody may recognize sequence, conformation,
modification, and other possible epitopes. As such, these anti-
bodies are typically generated and used “in-house” and may
not have utility for other ONT drugs or across drug platforms
and may not be available for use except by their originators,
or otherwise as gifts, or with limitations on use.43,44

However, all the above-listed methods have well-established
pros and cons15 and are highly dependent on length/size,
sequence, and the chemical modification of the target oligo-
nucleotide. For instance, hybridization assays, including ISH,
have limitations that include lack of general utility (as unique
probes must be designed individually for each ONT), the sig-
nificant time and costs required to optimize probes, limita-
tions for certain ISH probes to bind and detect short ONT
drug sequences and difficulties encountered when repeated
sequences are present within the ONT.45,49 Lastly, qPCR,
arguably the gold standard for sensitive quantitation of DNA
and mRNA molecules, has insufficient sensitivity for short or
heavily modified ONTs.50 Indeed, many existing assays suf-
fer from a “general lack of sensitivity” needed for preclinical
assays, creating an unmet need for alternatives.18

Chemical Modifications of ONTs:

Common Features to Exploit

Some of the practical limitations of ONTs as viable
drugs have been at least partially addressed over several
decades of development; specifically, strategies for tissue-
specific drug delivery, such as GalNAc conjugates that
bind to the asialoglycoprotein receptor for hepatic target-
ing,51 or the use of lipid nanoparticles for drug encapsula-
tion.52 These strategies are expanding the potential clinical
repertoire for ONTs. One further key development in
ONTs has been the introduction of chemical modifications
that significantly improve compound stability without
modifying the ONT drug sequence.53,54 Medicinal chem-
ists improved the “drug-like properties” of ONTs by incor-
porating modifications into the sugar-phosphate backbone

and/or nitrogenous bases,53 which are designed to increase
ONT drug stability, uptake, and efficacy, but may increase
the likelihood of toxicity.55 Recent studies reveal that tox-
icity varies significantly between ONT sequences and
impurities56 although this can be modulated by adjust-
ments to the ONT composition, such as the introduction of
divalent cations.57 First-generation chemical modifications
(see Fig. 1) centered on phosphorothioate (PS) modifica-
tion of the phosphate portion of the backbone58,59 whereas
second-generation modifications included adding substitu-
ent groups to the 20 position of the ribose portion of the
backbone, specifically 20-O-methyl (OMe), 20-O-methoxy-
ethyl (MOE), and 20-fluoro modifications of RNA.60 Third-
generation modifications61 include peptide nucleic acids,
locked nucleic acids, morpholino phosphoramidate modifi-
cations, and others.62 Of the ONT drug modalities, ASOs
designed as “GapmeR”s are comprised of typically three to
five 20-modified nucleotides on either side of a central
unmodified DNA “gap” sequence; this general structure
can induce target mRNA degradation via endogenous RNAse
H activity.63 Drug developers can therefore integrate different
chemical modification combinations around this basic struc-
ture while balancing both efficacy and tolerability.55 Crucially,
this has led to some convergence around optimal modifica-
tions across diverse clinical lead ONTs.

Strategies for the Development of Antibodies

Based on our experiences we recognize two challenges in
generating antibodies to chemical modifications on oligonu-
cleotides: nucleic acids are notoriously poor immunogens,
and chemical modifications themselves represent inherently a
minimal epitope for antibody detection. After analyzing com-
mon ONT drug structures we concluded that only monoclonal
antibodies could effectively and reproducibly recognize mini-
mal compositional changes, such as the substitution of an
oxygen atom for sulfur within the chemical modification of
PO to PS (e.g., phosphodiester to phosphorothioate).

FIG. 1. Partial structures of chemical modifications frequently used by medicinal chemists to enhance the “drug-like
properties” of ONTs. ONTs, oligonucleotide therapeutics.
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Additionally, selecting a cohort of clones from more than one
splenocyte-myeloma fusion could improve the likelihood of
obtaining fit-for-purpose antibodies capable of detecting
chemical modifications in different types of ONT drugs (e.g.,
ASO, siRNA, mRNA, or aptamer), while ensuring the anti-
body’s utility across a range of immunoassays. This “panel”
approach to develop monoclonal antibodies yielded the
intended result for detecting PS, 20-OMe, or 20-MOE modifi-
cations with differential sensitivity and specificity independ-
ent of sequence or format (see Table 2).

The immunogens used to elicit the immune response in
mice were either a modified nucleotide-carrier protein or a
modified oligonucleotide-carrier protein conjugate, depend-
ing on which chemical modification was targeted for
immune response. Upon analysis of our empirical data, we
concluded that derivatized modified nucleotide/oligonucleo-
tides conjugated to Keyhole limpet hemocyanin as a carrier
protein in ratios ranging from 4:1 to 10:1 would serve as
optimal immunogens. Likewise, the dosage used for the ini-
tial immunization of mice and subsequent booster injections,
as well as the route of administration were carefully selected
based on proprietary data.

Once generated, hybridomas were screened for sensitivity
and specificity using ELISA and/or immunofluorescence
(IF) microscopy as surrogate assays. We surmised that these

assays could mimic in vitro and in vivo assays, including
those assays designed to assess the biological effects of
ONTs. Control oligonucleotides were synthesized and used
to elucidate both the sensitivity and specificity of the anti-
body clones during the development phase. Negative control
unmodified oligonucleotides possessed identical nucleotide
sequences as the chemically modified PS, 20-OMe and/or 20-
MOE positive control oligonucleotides. All oligonucleotide
controls used in ELISA were conjugated to bovine serum
albumin as a carrier protein to facilitate binding to the
ELISA plate. In addition to indirect ELISA, a sandwich
ELISA was employed where oligonucleotide controls were
captured by candidate antibodies (capture antibody) and
detected with an antibody carrying a quantifiable label
(detection antibody), e.g., biotin or a fluorochrome.

Furthermore, modified oligonucleotide controls were syn-
thesized with various incorporation levels of the selected
modification, from 0% to 100%. For example, for the PS
modification, controls were synthesized with 0% (naturally
occurring PO backbone), 5%, 10%, 25%, 50%, 75%, and
100% PS incorporation. Additional negative control oligonu-
cleotides were synthesized with 20-MOE or 20-OMe modifica-
tions but without PS modification. Additional positive control
oligonucleotides were synthesized comprising the target
chemical modification alongside additional modifications

TABLE 2. PANELS OF MONOCLONAL ANTIBODIES SORTED BY SPECIFICITY FOR CHEMICAL MODIFICATION,
E.G., PS, 20-MOE, OR 20-OME

ELISA reactivity

Clone ID Chemical modification Isotype PO ASO Fully modified ASO 5-10-5 GapmeR

PS01 PS IgG1 kappa - +/- -
PS02 PS IgG2a kappa - + -
PS03 PS IgG2a kappa - +++ +++
PS04 PS IgG2a kappa - +++ +++
PS05 PS IgG2a kappa - +++ +++
PS06 PS IgG1 kappa - ++ +/-
PS07 PS IgG1 kappa - ++ ND
PS08 PS IgG2b kappa - ++ -
PS09 PS IgG2a kappa - +++ +++

Clone ID Chemical modification Isotype PO ASO Modified nucleotidea 5-10-5 GapmeR

MOE1 2’-MOE IgG1 kappa - U C +++
MOE3 2’-MOE IgG1 kappa - A U C ++
MOE4 2’-MOE IgG1 kappa - A C ++
MOE9 2’-MOE IgG1 kappa - C +++
MOEC 2’-MOE Y1Œ-Y1Œ-Y2aŒ cocktailb - A U C +

Clone ID Chemical modification Isotype PO ASO Fully modified ASO 5-10-5 GapmeR

OME1 2’-OMe IgG1 kappa - ++ -
OME2 2’-OMe IgG2a kappa - +++ -
OME3 2’-OMe IgG3 kappa - + -
OME4 2’-OMe IgG1 kappa - +++ -
OME5 2’-OMe IgG2a kappa - +++ -

Data are shown for reactivity against fully modified ASO and a 5-10-5 GapmeR used for selection and screening clones and characteriza-
tion of purified antibodies. The GapmeR used for screening contained both PS and 20-MOE modifications but did not contain 20-OMe, e.g.,
inotersen. See the text for a complete description of positive and negative controls used to develop panels of antibodies. Key: (-) negative;
(+/-) weak; (+) positive; (++) strong; (+++) very strong; (ND) not determined.

aModified guanine nucleotide was excluded as a control.
bMOEC is a cocktail of three unique clones mixed at a ratio of 1:1:1.
ASO, antisense oligonucleotides; PS, phosphorothioate.

ORTHOGONAL APPROACH: OLIGONUCLEOTIDE IMMUNOASSAYS 9



(e.g., as would be applied in GapmeR ASOs), and with vary-
ing nucleotide sequences. Unmodified nucleotides and nucle-
otides modified on the nitrogenous base rather than the
internucleotide linkage were also used as negative controls.

Ultimately hybridomas were selected after iterative limiting
dilution steps where the amount of screening oligonucleotide
was varied from 0.1 mg to 0.5 mg to assess for sensitivity.
Only hybridomas reactive to the positive controls and

FIG. 2. Immunofluorescence microscopy
using anti-PS monoclonal antibody clone
PS05. Mouse glioma cells derived from
C57BL/6 mice were cultured and treated
with fully PS-modified ASO drug. After fix-
ation with paraformaldehyde, cells were
incubated with a 1:2,000 dilution of anti-PS
monoclonal antibody clone PS05 (green) in
PBS followed by counterstaining of nuclei
with DAPI (blue). Vehicle-only treated cells
showed no staining (not shown). Image cour-
tesy of CoSyne Therapeutics. ASO, antisense
oligonucleotides; PS, phosphorothioate.

FIG. 3. Immunofluorescence microscopy
using anti-PS monoclonal antibody clone
PS03. HeLa cells were cultured and treated
with 100 nM of a fully-PS modified 16-mer
MALAT-1 ASO by gymnosis for 72 h. After
fixation with paraformaldehyde, cells were
incubated with a 1:1,000 dilution of anti-PS
monoclonal antibody clone PS03 (green) in
PBS and an anti-alpha tubulin (red) antibody
followed by counterstaining of nuclei with
DAPI (blue). Cytoplasmic accumulation of
signal indicative of endosomal compartmen-
talization is observed. Data generated by
Inês Fial, Nucleic Acid Therapy Accelerator
(NATA).
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nonreactive to all negative controls were selected for further
screening. Hybridomas showing sufficient titer, sensitivity,
and specificity were selected for further development which
included production in cell culture, cell banking, scale up, and
purification using protein A chromatography. At each stage
of development, the full complement of positive and
negative control oligonucleotides was used to assess
performance.

Orthogonal Approach: Antibodies Specific

for Modification Independent of ONT Sequence

By using the strategies described above we exploited the
common chemical features of modified ONTs to develop,
optimize, and validate panels of monoclonal antibody reagents
as analytical tools that precisely detect either PS, 20-MOE, or
20-OMe chemical modifications independent of nucleic acid
composition, structure, strandedness, configuration or plat-
form.64 Example immunocytochemical data for anti-PS clones
are shown here (Fig. 2) and preliminary studies using an anti-
20 MOE clone have been described elsewhere.65 These “uni-
versal detection reagents” may be used directly in (1) immu-
nohistochemistry to determine biodistribution, including co-
localization with standard tissue/cell markers; (2) IF to deter-
mine intracellular localization, e.g., sequestration (Fig. 3); (3)
ELISA to determine ADA binding, immunogenicity, and drug
ranking; (4) immunoprecipitation to determine protein binding
in serum and/or tissue lysates; (5) in vitro cell culture studies
to support ONT potency assessments; (6) for quantification
studies (Fig. 4); (7) to satisfy the unmet need to understand
the cytosolic and nuclear penetration of ONTs,66 (8) three-
dimensional cell culture studies to determine the penetration
of ONTs into culture systems such as spheroids, (9) FACS to
identify and separate cells dissociated from tissue based on
the presence or absence of intracellular ONTs within individ-
ual cells, (10) characterization of the stereochemistry of PS
containing ONTs by assessing the chiral make-up of ONTs
that may affect biological activity, and (11) other immunoas-
says. We summarize the potential uses of these novel analyti-
cal reagents in Table 3.

Conclusion

There is an ongoing and significant need to develop new
analytical methods for ONTs and improve existing localiza-
tion and quantification methodologies.18 Beyond fundamen-
tal analysis (e.g., localization and quantification in tissue),
there are additional needs “to study the metabolism and bio-
transformation of these molecules,”67 including better meth-
ods to identify oligonucleotide metabolites and the ability to
quantify ONTs in extrahepatic tissues, especially when low
concentrations of these drugs are likely present due to their
relatively long drug half-lives and infrequent administration.
For instance, within the oligonucleotide field, it is certain
that quality control programs require “differential” analytical
expertise and technologies.68 While LC-MS/MS, HI-ELISA,
ISH, qRT-PCR, and 31P NMR-SAX/HPLC69 have become
accepted methods for analysis and quantification of ONTs,
the novel universal detection reagents we describe present
opportunities to expand the analysis of ONTs to support PD/
PK studies intended to demonstrate their efficacy and safety.
Ultimately, we envision this technology accelerating the rate

at which ONT drugs advance through clinical trials and reg-
ulatory approval.

Here, we opine that highly specific antibodies to ONT
modifications and the immunoassays they enable may poten-
tially enhance the development and production of ONTs,
expand studies to determine the safety and efficacy of this
class of drugs, and serve as orthogonal assays to supplement
data collected using established assays for the analysis of
ONTs. Although immunoassays were not specifically named
in the recently issued European Medicines Agency draft
guidelines, the use of “orthogonal analytical assays” for cer-
tain purposes was encouraged.70 Immunoassays based on the
use of precise antibody-based analytical tools that only rec-
ognize chemical modifications, independent of nucleic acid
sequence, would be an added tool in the toolbox of analytical
assays. Commonly, immunoassays are well-established as a
rapid and highly reproducible analytical tool.71 Thus, novel,

FIG. 4. Quantification of fully PS-modified ASO by
ELISA using anti-PS monoclonal antibody (clone PS04).
The ability to quantify PS-modified ASO diluted in tris-
based buffer (l) over a range from 44 pM to 11 nM con-
centrations is shown in the curve as indicated by spiking
known amounts of the ASO from a 100 nM stock by 2.5-
fold serial dilution and subsequently detected using anti-
PS monoclonal antibody. Samples were run in triplicate.
A standard curve was plotted as the average OD result vs.
the log of ASO concentration in pM using a 4PL best-fit
formula. The effect of matrices was investigated by per-
forming similar experiments replacing the tris-based
buffer with either HeLa whole cell lysate (�) or mouse
serum (�) at initial protein concentrations of 0.3 mg/mL
and 2.5 mg/mL, respectively. Nonmodified PO oligonu-
cleotide of the same sequence was used as a negative con-
trol (PO Oligo) and was similarly prepared in HeLa
whole cell lysate (�). Reproducibility was confirmed by
repeating the assay twice (data not shown). For PS-modi-
fied ASO diluted in tris-based buffer, the LLOQ defined
as the lowest standard detected is 44 pM. The LOD,
defined as the average signal of background + 3· standard
deviation) was determined to be <33pM. The ULOQ as
shown is 11 nM. The LLOQ/ULOQ is defined as the low-
est/highest standard concentration meeting the acceptance
criteria of calculated/theoretical · 100% recovery between
70% and 130% and CV £25% for LLOQ and between
80% and 120% and CV £20% for ULOQ. Further optimi-
zation and sensitivity enhancement will likely decrease
the LLOQ by one log unit. ELISA, enzyme-linked immu-
nosorbent assay; LLOQ, lower limit of quantitation; LOD,
limit of detection; ULOQ upper limit of quantitation.
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well-validated monoclonal antibodies that detect unique
chemical modifications in ONTs may have broad applica-
tions to preclinical, nonclinical, and clinical studies involv-
ing ONTs. This is especially true now as the diversity of
chemical modifications, the length of ONTs, and emerging
backbone chemistries continue to expand creating even
greater challenges to existing assays in this field.72

Identifying ONTs within the cytosol is quite difficult and
has been described as a significant barrier to drug develop-
ment.66 Our unpublished immunochemical studies to date
have shown accuracy and ease of use to localize and quanti-
tate ONTs in cells and tissue and specifically determine their
subcellular localization. Furthermore, as siRNA and poten-
tially other RNA modalities are considered a platform tech-
nology by the FDA, immunoassay-based analytical tools
may facilitate the identification of targeting moieties and aid
in quality control assessments. These reagents, binding inde-
pendently of sequence, facilitate the efficient comparative
assessment of how sequence modification affects biological
activity and safety, and therefore constitute a solution to
problems identified by the FDA.73 In a 2020 review article,
Sutton et al. concluded that “there are still many advances to
be made in the field of oligonucleotide analysis.”26 We agree
and believe that highly specific antibody-based immunoas-
says capable of detecting as little as a single modified inter-
nucleotide linkage in 20 may represent a significant advance
and should be thoroughly explored for utility by the oligonu-
cleotide community.

To validate our hypothesis, we encourage researchers
to use and interrogate this novel technology. Our data,
while limited, is highly suggestive of the broad suitability
of these immunoassays to collect meaningful analytical
data that has relevance to preclinical, nonclinical, and
clinical studies. If this technology truly signifies a break-
through in the analysis of ONTs, this can only be verified
by rigorous assessment of the reagents and methods. Such
an assessment should consider various aspects of ONT
quality including pharmacological properties, safety, and
efficacy by utilizing the immunoassays as described

herein. Ideally utilizing this technology to collect data by
an orthogonal approach could go far in demonstrating the
value of this technology.
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